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Chart I. Formation and Redox Reactions of Molybdenum-3,5-di-
ferf-butylcatechol Complexes in Acetonitrile 
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cyclic voltammetry). The product solution is ESR silent. The 
peak at +1.0 V is characteristic of the oxidation of catechol 
to quinone. An initial negative scan of 1 yields a series of peaks 
at - 0 .4 , - 0 . 8 , and -1 .1 V vs. SCE. The peaks at -0 .8 and 
— 1.1 V represent one-electron/molybdenum reductions of the 
monomer of 1 and of the reduction product of 1, respectively. 
The reversible couple at — 1.6 V vs. SCE appears to represent 
a reduction of the ligands. A peak at —0.3 V also is observed 
which probably is due to a quinone impurity. Controlled po
tential coulometry of 1 at —0.5 V yields a solution whose 
spectrum is characteristic of a bis(catechol) complex of mol-
ybdenum(V). The presence of an EPR peak at a g value of 1.95 
indicates that this species is at least partially in a mononuclear 
form. The product solution from controlled potential cou
lometry of 1 at —1.2 V is characteristic of a bis(catechol) 
complex of Mo(IV). Again, it exhibits neither an ESR spec
trum nor a magnetic moment. 

Cyclic voltammetry of 2 indicates that an initial positive scan 
yields a reversible couple at +0.25 V, whose height is consistent 
with a one-electron oxidation. (Addition of 1 equiv of base/ 
molybdenum in 1 results in a species with similar electro
chemistry to that of 2.) However, controlled-potential cou
lometry of 2 at +0.3 V indicates an overall oxidation of one 
electron/binuclear complex. Reduction of this product solution 
at —0.6 V also is a one-electron process which yields a solution 
of 2. Addition of 1 equiv of base to 2 yields a species with the 
electrochemistry of Figure 2d and causes the controlled-po
tential coulometry at 0.0 V to increase to an overall one-elec-
tron/Mo oxidation. The product solution exhibits an ESR 
resonance at a g value of 2.00 which is 10 G wide and charac
teristic of the semiquinone radical. Both oxidations appear to 
yield quinone as a major electroactive product. 

Consideration of the analytical, spectroscopic, and elec
trochemical results permits the formation and oxidation-
reduction reactions for 1 and 2 to be formulated in Chart I. 
Additional studies are in progress on the interaction of various 
dioxygen species (O2, O 2

- - , H2O2 , and H O 2
- ) with 1 and 2. 
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Bimetallic Copper(I) and -(II) Macrocyclic Complexes 
as Mimics for Type 3 Copper Pairs in Copper Enzymes 

Sir: 

The complexing of two metal ions by the same macrocyclic 
ligand is subject to much current interest.1,6 In principle, such 
systems allow the study of (i) metal-metal interactions and (ii) 
insertion of substrates and their possible transformations. 
Moreover, such structures are often found in biological sys-
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Figure 1. Schematic representation of |Cu2C(L)|"+ . 

terns; metalloproteins often use binuclear metal centers to 
perform catalytic functions.2 We report here our studies of 
macrocyclic bimetallic copper complexes which mimic some 
properties of the multicopper proteins containing pairs of 
copper atoms which in the cupric state are strongly antifer-
romagnetically coupled. The copper atoms bound in this 
manner in the proteins are commonly referred to as type 3 
coppers.3 

The synthesis4 of the macromonocyclic ligand la was carried 
out by high dilution condensation^ of the required diamine 
with the diacid chloride to the corresponding cyclic bisamide 
7 (mp 115 0C, yield 50%) which was then reduced with dibo-
rane in THF (95% yield) followed by hydrolysis with 6 N HCl 
at reflux and treatment with aqueous tetraethylammonium 
hydroxide. The other ligands, 2-6, were synthesized in the 
same way, or by later attachment of side chains on the ring 
nitrogens. 

All of these ligands form complexes of 1:2 ligand-metal 
stoichiometry with copper(I) and -(II) salts. The structures 
of all of these complexes may be schematically represented by 
|2Cu"+cL|2"+ , where L symbolizes the macrocyclic ligand 
(Figure 1). The separation of the two metal atoms can range 
from 4 to 8 A according to the conformation of the macrocyclic 
ligand. Insertion of a substrate molecule S between the two 
metal cations is possible (Figure 1); with copper(I) salts, the 
properties of these ligands in presence of substrates such as CO, 
NO, and O? are similar to those reported recently for the "ear 
muff ligand, l,4-bis(l-oxa-4,10-dithia-7-azacyclododecan-
7-ylmethyl)benzene.6-8 With copper(II) salts, CuX2 (X = 
NO3

- , BF4
-, and C104~), subsequent reactions with substrate 

anions and molecules also take place.9 

Addition of a sodium azfde solution in water to a solution 
of la and Cu(N03)2 in methanol gave dark green crystals of 
|Cu2"(N3)4Cla| (I). The electronic spectrum of I (solvent, 
acetonitrile) shows bands at 380 nm (e 3000 L mol-1 cm-1) 
and 640 (350). The IR spectra of I shows two âsym(N3~) ab-

^s^vV^s-^i 

y- S s y N ^ ^ s H 
la, X = H, Y = H 2 

2 , X = C H 2 C H 2 N H 2 , Y = H 2 

3 , X = C H 2 C H 2 N ( C H 3 J 2 , Y = H 2 

4 , X = CH 2CH 2SH, Y = H 2 

5 , X = CH 2C 6H 4M(ortho) , Y = H 2 

7 , X = H, Y = 0 

Figure 2. (a) Structure of the [2Cu"(N3),jCla] molecule. The symmetry 
is 2/ni. All atoms are represented by 50% probability thermal ellipsoids, 
(b) Structure of the molecule in the plane of symmetry. For clarity, only 
the N(I) and N(12) nitrogen atoms of the ligand la are represented. Se
lected bond distances (in angstroms) follow: Cu-N(I) (ligand). 2.072 (3); 
Cu-N(25) andCu-N(27') (azide end to end), 2.013 (3) and 1.994 (3); 
Cu-N(28) (azide end on), 1.987 (3): Cu-S(4), 2.919 (1): N(25)-N(26), 
1.170 (5): N(26)-N(27), 1.185 (5): N(28-N(29), 1.186 (6): N(29)-
N(30), 1.160 (7). The Cu---Cu interatomic distance is 5.145 (0) A. Se
lected bond angles (in degrees) follow: N(l)-Cu-N(28). 86.8 (I): 
N(l)-Cu-N(27'). 90.3 (1); N(25)-Cu-N(28), 91.4 (I); N(25)-Cu-
N(27'), 91.6 (l);S(4)-Cu-N(l), 79.03 (7); S(4)-Cu-N(25). 100.83(8); 
S(4)-Cu-N(27'), 94.12 (7): S(4)-Cu-N(28), 85.33 (8): Cu-N(25)-
N(26), 136.0 (2): N(25)-N(26)-N(27). 174.3 (4): Cu-N(28)-N(29), 
120.7 (3); N(28)-N(29)-\ '(30). 178.6 (5). 

sorptions at 2030 and 2065 cm - ' and one psym(N3~) band at 
1285 cm"1. The structure10 of I consists of discrete 
|Cu2n(N3)4cla| molecules (Figure 2a) which present 2/ 
miCih) crystallographic symmetry. The metal ions are located 
inside the macrocyclic ligand, linked each to a NS2 ligand 
donor set, to one nitrogen of an end-on bonded azide ion, and 
to two nitrogens of two di-/u(l,3)-azido end-to-end bridging 
azide ions. The coordination geometry of each copper ion is an 
elongated octahedron with a long Cu-S bond distance of 2.919 
(I)A. All of the nitrogen atoms are located in the symmetry 
plane and the Cu-N bond distances are almost identical: 
Cu-N(I) (ligand), 2.072 (8); Cu-N(25) and Cu-N(27') (N3

-

end-to-end di-/x bridging), 2.013 (3) and 1.994 (3), respec
tively; Cu-N(28) (N3- end on), 1.987 (3) A. The Cu- • -Cu 
separation within the Cu2(N3^ ring is 5.145 (0) A (Figure 
2b).1 '-12 Variable-temperature magnetic susceptibility mea
surements13 between 4.2 and 390 K show that compound I is 
completely diamagneticu (Figure 3). The small increase in 
XM at very low temperature is most likely due to a small 
amount of a monomeric paramagnetic impurity (~1%) (vide 
infra). To eliminate the effect of this impurity, the experi
mental XM values have been corrected assuming Curie law 
behavior. The results (Figure 3) show that the XM values of I 
are completely independent of temperature. The room tem
perature and 100 K X-band EPR powder spectra'5 of I show 
a signal at g± = 2.05 and a four-line hyperfine signal at g\\ = 
2.24, with spacings between successive peaks of ^ 153 G. The 
lack of the half-field AAZ5 = 2 transition is consistent with a 
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Figure 3. Magnetic susceptibility data for [2Cu''(N3)40 la] (curve B) and 
for [2(CuCb)CIa] (curve A) vs. temperature. Curve C represents the 
variation of XM for [2Cu"(N3)4Cla] corrected for the paramagnetic 
monomeric impurity (l%). 

monomeric copper(II) species. Moreover, the integration of 
the EPR signal indicates that only 1% of the copper present 
in the sample is responsible for the signal. Thus, EPR spec
troscopy confirms the presence of a paramagnetic impurity and 
justifies the correction applied to the experimental XM 
values. 

To study the magnetic exchange interactions between two 
copper atoms enclosed in ligand la without other bridging 
groups, we have studied the structure and magnetic properties 
of |2(CuCl2)cla| (II). II has been obtained by slow evapo
ration at room temperature of solutions of ligand la and cop-
per(ll) dichloride in methanol. The structure16 of II consists 
of discrete molecules in which the two copper ions are enclosed 
by ligand la and bonded each to one NS2 donor set and to two 
chlorine atoms (Figure 4). The coordination geometry of both 
copper ions is a square pyramid in which the metal atom lies 
~0.4 A out of the basal NS2Cl plane toward the axial chlorine 
atoms. The Cu- • -Cu separation is 7.228 (I)A. The magnetic 
susceptibility measurements between 4.2 and 293 K show that 
II follows the Curie law (Figure 3) with a Curie constant of 
0.798 cgs mol-1 and magnetic moment of 2.53 /UBmol-1 or a 
/xeff of 1.79 MB/CU atom. 

While a great many binuclear copper(II) complexes have 
been shown to exhibit antiferromagnetism, very few are dia-
magnetic at room temperature.14 I is until now the only ex
ample known exhibiting this property and presenting two 
copper(II) cations doubly bridged20 and separated by a dis
tance as long as 5.145 A.17 The magnetic exchange interac
tions18 appear to be very strong in I in comparison with those 
reported recently for several nonmacrocyclic di-/u(l,3)-azido 
bridged binuclear copper species, as for instance |Cu2-
(Me5dien)2(N3)2| (BPh4);,

11 (III). It is known that structural 
features play an important role in the strength of the sup-
erexchange interactions18 and several of these features appear 
to be slightly different for I and III (see Figure 2 caption and 
ref 11). Moreover, in the solid state, the molecules of I are 

Figure 4. Structure of the [2(CuCb) C la] molecule. The two copper ions, 
the four chlorine atoms, and the two nitrogen atoms of the ligand are lo
cated approximately in a pseudoplane of symmetry. Selected bond dis
tances (in angstroms) follow: Cu(I)-Cl(I), 2.260 (0); Cu(l)-CI(2), 2.453 
(0); Cu( I )-N( 1), 2.033 (5); Cu( 1 )-S(4), 2.350 (1); Cu(I )-S(22), 2.236 
(1); Cu(2)-Cl(3), 2.499 (0); Cu(2)-Cl(4), 2.240 (0); Cu(2)-N( 13), 2.015 
(4); Cu(2)-S(10), 2.435 (1); Cu(2)-S(l6), 2.407 (1). The Cu- • -Cu in
teratomic distance is 7.228 (0) A. 

weakly associated by Cu—N(I) H- • -N(28)—Cu hydrogen 
bonds with an N (1 )• • -N(28) distance of 3.149 (5) A. Although 
magnetic superexchange interactions can take place through 
hydrogen-bonded ligand atoms,19 NMR measurements in 
several solvents indicate that such intermolecular interactions 
must be very weak in I and that most probably only intramo
lecular interactions are responsible for the diamagnetism. 
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Fluoroxysulfate: A Powerful New Oxidant and 
Fluorinating Agent1 

Sir: 

!•,l 1926 Fichter2 observed that the passage of fluorine 
through aqueous solutions of sulfate or bisulfate led to the 
production in the solutions of a "vergangliches Oxidation-
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Figure 1. Infrared spectrum of RbSO4F, taken with a Beckman IR 4260 
spectrophotometer using a diamond anvil cell and a 4X beam condenser 
(ref 10). This technique was necessitated by the tendency of the fluorox-
ysulfates to react with KBr and AgCl infrared windows. The spectrum of 
CSSO4F is very similar, except that the band at 1105 cm - 1 is considerably 
less prominent. 

smittel", or "ephemeral oxidant", that was more powerfully 
oxidizing than peroxymonosulfate and that decomposed over 
the course of several hours. Fichter's work was largely ignored 
for many years, and his conclusions have recently been chal
lenged.3 However, we have repeated a number of his experi
ments and have generally confirmed his results. In addition, 
we have isolated the "ephemeral oxidant" in the form of its 
rubidium and cesium salts and have identified it as the fluo
roxysulfate ion, SO4F-. 

We prepared rubidium and cesium fluoroxysulfates by 
passing fluorine into solutions of Rb2SO4 and CS2SO4, re
spectively. Approximately 20 mmol of F2 (as a 20% mixture 
in nitrogen) was passed into 8 mL of 1.3 M Rb2SO4 or 2 M 
Cs2SO4 in a Tefzel tube over the course of an hour. An ice-salt 
bath was used to keep the solution temperature between 0 and 
—4 0C. The yellowish-white precipitates were centrifuged, 
washed with a little water, and dried in vacuo without heating. 
Yields were about 1 g of the rubidium salt and about 2 g of the 
cesium salt. 

Samples for analysis were dissolved in water in Teflon bot
tles, and a slight excess of sodium carbonate was added. The 
solutions were then heated for 48 h at 90 0C to hydrolyze any 
fluorosulfate that might be present either as an impurity or as 
a decomposition product of the fluoroxysulfate.4 Rubidium 
and cesium were determined by atomic absorption, fluoride 
with a fluoride-sensitive electrode, and sulfur gravimetrically 
as barium sulfate.5 Anal. Calcd for RbSO4F: Rb, 42.6; F, 9.5; 
S, 16.0. Found: Rb, 42.2; F, 8.8; S, 15.5. Calcd for CsSO4F: 
Cs, 53.6; F, 7.7; S, 12.9. Found: Cs, 54.1; F, 7.3; S, 12.4. In 
addition, the oxidizing titers of the salts were determined by 
dissolving weighed amounts in a potassium iodide solution, 
acidifying, and titrating the liberated h~ immediately with 
standard thiosulfate solution. Results (mequiv/g): Calcd for 
RbSO4F: 10.0. Found: 9.6. Calcd for CsSO4F: 8.1. Found: 7.5. 
The salts contained an impurity that slowly oxidized iodide, 
thereby increasing the titer by 1-2%. The rate of this oxidation 
was unaffected by addition of molybdate, and we identify this 
impurity as peroxydisulfate. 

The infrared and Raman spectra of the salts (Figures 1 and 
2) agree well with those of the isoelectronic species ClO4F68 

and its analogs ClO4Cl9 and ClO4Br,9 and they support the 
formulation of SO4F - as a fluoroxy ion or hypofluorite: 
O3SOF-. We assign the band at 830 cm"1 to the O-F 
stretch. 
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